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Abstract 

We propose new versions of Holt-Winters (HW) and seasonal Holt-Winters (SHW) 
time series forecasting algorithms. The exponential smoothing construct is 
identical to HW/SHW, except that the coefficients are estimated by minimizing a 
given quantile error criterion, instead of the usual squared errors. We call these 
versions quantile HW/SHW (QHW/QSHW), which amounts to performing 
HW/SHW under an asymmetric error loss function. We discuss best linear 
prediction (BLP) for ARIMA models, and highlight some models, where various 
versions of exponential smoothing are known to be optimal (in the BLP sense). 
This serves as a guide to models that we should focus on for a simulation study. 
The simulations compare scaled prediction errors between BLP and QHW, with 
models driven by Gaussian and Laplace noise. The results show that in most  
cases QHW gives similar forecasts to BLP. The advantage of QHW over BLP is 
that the user does not have to a-priori decided on a model for the data. The 
methodology is illustrated on some real data sets of interest in climatology and 
finance. 

 



A. ALEXANDRE TRINDADE and YANXUN XU 16

1. Introduction 

Exponential smoothing has been shown through the years to be very 
useful in many forecasting situations. It originated in Brown’s work in 
the 1940s. During the early 1950s, Brown extended simple exponential 
smoothing (SES) to discrete data and developed methods for trends and 
seasonality (Brown [4]). At approximately the same time, Holt developed 
a similar method to exponential smoothing for use on non-seasonal time 
series showing no trend (Holt [12]). He later extended this to a procedure 
that does handle trends. Winters [28] generalized the method to include 
seasonality, and this became known as the Holt-Winters (HW) forecasting 
system. See Gardner [8, 10] for a more detailed discussion on the early 
history of the methodology. 

The most important reason for the popularity of exponential 
smoothing is the surprising accuracy that can be obtained with minimal 
effort in model identification. There has been substantial work in 
connecting exponential smoothing and autoregressive integrated moving 
average (ARIMA) modelling. Muth [21] was among the first to prove that 
SES is “optimal” for an ARIMA (0,1,1) model, in the sense that it 
produces minimum mean squared error predictions. Two large empirical 
studies involving Box-Jenkins methodology by Makridakis and Hibon 
[17] and Makridakis et al. [18], noted little difference in forecast accuracy 
between exponential smoothing and ARIMA models. Non-seasonal HW 
has been shown to be optimal for two generating processes: A linear 
growth state-space model and an ARIMA (0,2,2) process (Harrison [11], 
Nerlove and Wage [22], Theil and Wage [26]). 

The seasonal version of HW (SHW) is optimal for a certain seasonal 
ARIMA process derived by McKenzie [20]. As Chatfield [5] observes, the 
additive version of SHW would probably never be identified through Box-
Jenkins procedures; and the multiplicative model does not appear to have 
an ARIMA equivalent. Thus, in general, HW models are not special cases 
of the ARIMA class. Makridakis et al. [18] showed that HW was robust at 
short horizons, but had a tendency to overshoot the data at longer 
horizons. 
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Since Gardner [8] the special case argument has been changed 
completely, and we now know that exponential smoothing methods are 
optimal for a very general class of state-space models that is in fact, 
broader than the ARIMA class (Gardner [10]). The basic elements of this 
new “taxonomy” of describing state-space equivalent models are 
introduced by Hyndman et al. [13]. All linear exponential smoothing 
methods have equivalent ARIMA representations, although most are so 
complex that, it is unlikely they would ever be identified through Box-
Jenkins methodology. Gardner and McKenzie [9] found that the non-
seasonal models contained at least six ARIMA models as special cases, 
with different parameters choices.  

While much attention has been paid to point forecasts, few studies 
address the issue of interval forecasts, where a range of plausible 
predicted values with a given confidence level is desired. The issue is 
reviewed by Chatfield ([6], Chapter 7), who remarks that there is no 
consensus on what to call these: Forecast limits, prediction bounds, 
confidence intervals, forecast regions, or prediction intervals. One 
approach has been to estimate quantiles of the conditional probability 
distribution of future values, and as such is synonymous with the value at 
risk forecasting methodology so popular in the financial literature (e.g., 
Jorion [14]). Taylor and Bunn [23] apply quantile regression (Koenker 
[15]) to the empirical fit errors from a version of exponential smoothing 
using simple power functions of the lead time as regressors, in order to 
produce quantile models for the forecast error. Taylor [24, 25] proceeds 
similarly, but now uses exponentially weighted quantile regression for 
quantile forecasting. 

In this paper, we propose a version of quantile forecasting by simply 
minimizing the empirical quantile criterion for the errors derived from 
HW and SHW. In other words, for a given quantile, estimates of the 
smoothing coefficients in HW and SHW are produced by minimizing 
empirical quantile errors. We call this quantile HW/SHW (QHW/QSHW). 
In the terminology of Makridakis and Hibon [19], who investigate the 
effect of different initial values and loss functions on exponential 
smoothing forecast accuracy, the approach may be viewed as utilizing an 
asymmetric loss function on forecast errors for optimal determination of 
the smoothing coefficients. 
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The remainder of our paper is organized as follows. Section 2 
summarizes the standard best linear prediction theory for autoregressive 
integrated moving average (ARIMA) processes, and associated quantile 
forecast versions in the context of models driven by both Gaussian and 
Laplace noise. Section 3 highlights well-known connections between 
ARIMA and HW-optimal forecasts, and suggests some models for in-
depth investigation in a simulation study. The proposed empirical 
quantile versions of the HW and SHW algorithms are presented in 
Section 4. Simulations in Section 5 compare the predictions from these 
algorithms with those derived from quantile versions of ARIMA models. 
We conclude in Section 6 by illustrating the proposed algorithms on three 
real data sets: Global annual average temperature, arctic sea ice extent, 
and the S&P 500 index. 

2. Prediction for ARMA and  
ARIMA Models 

We give here a brief overview of classical best linear prediction theory 
in the context of stationary autoregressive moving average (ARMA) 
models and non-stationary autoregressive integrated moving average 
(ARIMA) models. This standard material, which can be found in, e.g., 
Brockwell and Davis [3], is necessary here in order to discuss quantile 
prediction and thus make a connection with the proposed QHW/QSHW 
method. 

Consider the time series { } …… ,1,0,1,, −=tXt  driven by a 
sequence of zero-mean independent and identically distributed (IID) 

random variables { }tZ  with variance .2σ  Letting B denotes the backward 

shift operator, ,1−= tt XBX  the ARMA ( )qp,  model, ( ) =φ tXB  ( ) ,tZBθ  
where 

( ) ( ) ,1and,1 11
q

q
p

p zzzzzz θ++θ+=θφ−−φ−=φ ""   (1) 

denote the AR and MA polynomials, respectively, can be expressed in the 
equivalent forms 



 QUANTILE VERSIONS OF HOLT-WINTERS … 19

( )
( ) ( ) ( )

( ) ( ) .and, tttttt XBXB
BZZBvZB

BX π≡
θ
φ=/≡

φ
θ=  

If the process is causal, then ( ) ,2
210 "+/+/+/=/ zvzvvzv  for some 

absolutely summable sequence of constants { },jv/  so that the process can 

be expressed in a form that is independent of the future, 

.
0

jtj
j

t ZvX −

∞

=
/= ∑   (2) 

If the process is invertible, then ,0 itiit XZ −
∞
=
π= ∑  for some sequence of 

absolutely summable coefficients { }.iπ  (Equivalently, the series is causal, 

if and only if ( ) 0≠φ z  for ,1≤z  and invertible, if and only if ( ) 0≠θ z  for 

.1≤z ) 

The ARIMA ( )qdp ,,  model satisfies the equations ( ) =φ∗ tXB  

( ) ,tZBθ  where ( ) ( ) ( ).1 zzz dφ−=φ∗  For ,1≥d  this is a non-stationary 

model, but the integrated process ( ) t
d XB−1  is a stationary ARMA 

( )qp,  with AR and MA polynomials as in (1). As in the ARMA case, we 

have the equivalent infinite order MA representation, 

( )
( )

( ) ( ) ( ) ( )., * zzzvZBvZ
B
BX ttt

∗∗
∗

φθ=//≡
φ

θ
=  

Consider the classical best linear h-step ahead prediction problem, 
i.e., the linear function of observations nXX ,,1 …  from a causal 

invertible ARMA driven by IID noise that minimizes the mean squared 
prediction error. To simplify the exposition, we will focus on the h-step 

ahead best linear predictor (BLP), ( ),~ hXn  based on the infinite past. 

Then, standard results from, e.g., Brockwell and Davis [3], gives 

( ) ,~
jhnj

hj
n ZvhX −+

∞

=
/= ∑  
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whence the prediction error is 

( ) ( ) ,~~
1

0
jhnj

h

j
nhn ZvhXXhe −+

−

=
+ /=−≡ ∑  

with variance, 

( ) ( ( )) .~~ 2
1

0

222
j

h

j
nhn vhXXh /σ=−≡σ ∑

−

=
+E  

As is well known, the BLP on the infinite past coincides with the best 
predictor on the infinite past, ( ).,, 1 …−+ nnhn XXXE  In applications, 
and if n is large, the difference between the BLPs on the infinite vs. finite 
pasts is negligible. 

For an ARIMA with underlying causal and invertible ARMA, the BLP 
expressions are analogous: 

( ) ( ) ( ) ( ) .~,~,~ 2
1

0

22
1

0

∗
−

=
−+

∗
−

=
−+

∗
∞

=
/σ=σ/=/= ∑∑∑ j

h

j
jhnj

h

j
jhnj

hj
n vhZvheZvhX  

Let ( ) ( )hehxX nhn
~~~ +=+  denote the predictive distribution of hnX +  

conditional on a fixed predicted value of ( ) ( ).~~ hxhX nn =  If ( )heν~  denotes 
the ν  quantile of the prediction error ( ),~ he  then we have 

( ( ) ( ) ( ) ( )) ,1~~~~~
212 ννν −=+<<+ −+ hehxXhehxP nhnn  

whence, the end terms of the inequality can be taken to be ( )ν−1 100% 
prediction bounds. In particular, the ν  quantile of the predictive 
distribution of hnX +  is given by 

( ) ( ( ) ( )) ( ) ( ( ))heQhxhehxQXQ nnhn
~~~~~

ννν +=+=+  

( ) ( ) ( ),,~~~ νν hxhehx nn ≡+=   (3) 

where ( )⋅νQ  is generic notation for the ν  quantile function. 
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In certain special cases, it is possible to obtain explicit expressions for 
(3). Consider the following: 

Gaussian noise. ( ).,0N~ 2σtZ  Then ( ) ( ( ) ),~,0N~~ 2hhe σ  and thus, 

( ) ( ),~~ 1 hhe σΦ= −
νν  where 1−Φν  is the ν  quantile of a standard normal. 

Laplace noise. ( ).,,AL~ τκθtZ  Then ( )he~  is a linear combination of 
asymmetric Laplace (AL) distributions, whence its quantiles, ( ),~ heν  can 
be explicitly computed according to the algorithm of Trindade et al. ([27]), 
Proposition 1). The AL is characterized by location ( ),θ  scale ( ),τ  and 
skewness ( )0>κ  parameters. Values of κ  in the intervals ( )1,0  and 
( ),,1 ∞  correspond to positive (right) and negative (left) skewness, 
respectively (Kotz et al. [16]). 

If the model contains a deterministic trend, ,tµ  this term is 
subtracted from the model before obtaining the predictions, and then 
added back in. For example, in the Laplace case, 

( ) ( ) ( ).~~,~ hehxhx nhnn νν ++µ= +  

3. Connections Between ARIMA and  
Holt-Winters Optimal Forecasts 

This section gives an overview of the additive versions of exponential 
smoothing and its extensions to accommodate trends and seasonality. We 
will also highlight existing connections with optimal ARIMA and seasonal 
ARIMA models. This paves the way for deciding what models would make 
good candidates for extensive examination in order to assess forecast 
accuracy from the proposed QHW/QSHW method. 

Consider the observed time series .,,1 nXX …  In describing the 

algorithms that constitute the various versions of exponential smoothing, 
we adopt the notation of Chatfield [6] and define the following terms 
applicable to the various algorithms: Simple exponential smoothing 
(SES), Holt-Winters (HW), and seasonal Holt-Winters (SHW). 
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Description of term Term Parameter Applicable Algorithms 

Level at time t tL  α  SES, HW, SHW 

Slope at time t tT  β  HW, SHW 

Seasonality of period s at time t tI  δ  SHW 

Algorithm 1 (Simple exponential smoothing). For smoothing parameter 
,10 <α<  the SES update is: 

( ) ,111 ttt LXL α−+α= ++  

with initial conditions .11 XL =  The h-step forecast is, ( ) .ˆ nn LhX =  

It is well-known that the form of the predictors produced by SES 
coincides with the minimum mean-square error (MSE) predictors on the 
infinite past (henceforth, optimal) obtained from the ARIMA (0,1,1) model 

( ) ( ) ( ).,0IID~,11 2
1 σα−−=− − tttt ZZZXB  

See, e.g., Chatfield ([6], Chapter 4). 

Algorithm 2 (Holt-Winters). For smoothing parameters 10 <α<  
and ,10 <β<  the HW algorithm updates are: 

( ) ( ),111 tttt TLXL +α−+α= ++  

( ) ( ) ,111 tttt TLLT β−+−β= ++  

with initial conditions 22 XL =  and .122 XXT −=  The h-step forecast 

is, ( ) .ˆ nnn hTLhX +=  

Algorithm 3 (Seasonal Holt-Winters). For smoothing parameters 
,10,10 <β<<α<  and ,10 <δ<  the SHW algorithm updates are: 

( ) ( ) ( ),1111 ttsttt TLIXL +α−+−α= −+++  

( ) ( ) ,111 tttt TLLT β−+−β= ++  

( ) ( ) ,1 1111 stttt ILXI −++++ δ−+−δ=  



 QUANTILE VERSIONS OF HOLT-WINTERS … 23

with initial conditions ( ) ,, 11111 sXXTXL ssss −== ++++  and ii XI =  

[ ( ) ],1 11 +−+− sTiX  for .1,,1 += si …  The h-step forecast is, ( ) =hXnˆ  

.hsnnn IhTL +−++  

For SHW, the optimal model is a complicated seasonal ARIMA, 

( ) ( ) ,11 1111 tststt
s ZZZXBB +θ++θ=−− −−+− …  

with specified dependence of the jθ  on the smoothing parameters (see 

Equation (6.15) in Abraham and Ledolter [1]). 

Abraham and Ledolter [1] show that HW provides optimal forecasts 
when the underlying true model is the following: 

Model 1. HW forecasts are optimal according to the ARIMA (0,2,2) 
model: 

( ) ( ),,0IID~,1 2
2211

2 σ+θ+θ=− −− ttttt ZZZZXB  

with ( ) 211 −β+α=θ  and ( ).12 α−=θ  

We present two other models, where neither HW nor SHW are 
optimal, but where the strong trend and/or lack of seasonality would 
suggest use of HW. These will be used in the simulation study of Section 
5 in order to compare the forecasts obtained from QHW/QSHW to 
minimum mean-square error (MSE) predictors based on the fitted model. 

Model 2. An ARIMA (2,1,0) model, where neither HW nor SHW 
forecasts are optimal: 

( ) ( ) ( ) ( ).,0IID~,19.015.01 2σ=−+− ttt ZZXBBB  

Model 3. An AR (1) model with deterministic linear trend, where 
neither HW nor SHW are optimal: 

,3.0 tt WtX +=  

( ).,0IID~,7.0 2
1 σ+= − tttt ZZWW  
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Figure 1 displays some simulated realizations from these three 
models. 

 
Figure 1. Simulated realizations of length n = 200 from Models 1, 2, and 

3, driven by Gaussian noise with variance ,252 =σ  i.e., IID~tZ  
( ).25,0N  

4. Quantile Versions of Holt-Winters  
Algorithms 

In both HW and SHW, the smoothing parameters { }δβα ,,  can either 
be chosen arbitrarily, or estimated by minimizing some (loss) function of 
successive one-step prediction errors, ( ) ( ),1ˆ1ˆ 11 −− −= ttt XXe  

( ( )),1ˆ 1
2

−
+=
∑ t

n

st
eA   (4) 

where s is the period in SHW, and 1=s  in HW. Typically squared loss, 
( ) ,2zz =A  is used, resulting in the mean-squared error (MSE) criterion. 

Another common choice is ( ) ,zz =A  mean absolute deviation (MAD). 
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We propose versions of HW/SHW that estimates the smoothing 
coefficients by minimizing the ν  quantile error criterion. That is, use the 
loss function 

( ) ( ( )),0<−= zIzz ννA   (5) 

in (4), where ( )0<zI  takes on the value 1 if ,0<z  and 0 otherwise. We 

call these Quantile HW/SHW (QHW/QSHW). 

The rationale for this choice of loss function is that, for a random 
variable Z with quantile function ( ),⋅Q  minimization of ( )ξ−ZνAE  over 

all R∈ξ  results in the optimal value, ( ),νν Q=ξ  the ν  quantile of Z. 

The empirical analogue for a sample of data ,,,1 nzz …  is minimization of 

( ),ˆ1
1 zzn i

n
i −∑ =

−
νA  over all ,ˆ R∈z  resulting in ẑ  being the ν  sample 

quantile (e.g., Koenker [15]). Heuristically, this criterion then “trains” the 

one-step predictions ( )1ˆ 1−tX  to closely track the ν  quantile of the 

predictive distribution of .1+tX  

In general, for h-step prediction based on observations ,,,1 nxx …  let 

us denote the (empirically) obtained QHW/QSHW optimal value by 
( ).,ˆ νhxn  We then propose empirical quantile versions of Algorithms 1-3, 

where the smoothing parameters are obtained by minimizing the loss 
function ( ).⋅νA  For example, QHW is as follows: 

Algorithm 4 (Empirical quantile Holt-Winters). For observations 
,,,1 nxx …  and chosen quantile ,10 << ν  let the smoothing parameters 

1ˆ0 <α<  and 1ˆ0 <β<  be such that (4) is minimized with loss function 

(5). The QHW algorithm updates are then given by: 

( ) ( ),ˆ1ˆ 11 tttt TLxL +α−+α= ++  

( ) ( ) ,ˆ1ˆ 11 tttt TLLT β−+−β= ++  

with initial conditions 22 xL =  and .122 xxT −=  The h-step forecast is, 

( ) .,ˆ nnn hTLhx +=ν  
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To the best of our knowledge, this particular variant of exponential 
smoothing has not been investigated. Makridakis and Hibon [19] explored 
different loss functions on exponential smoothing forecast accuracy, most 
of them are symmetric, although they did consider an asymmetric loss 
function, which weighted positive errors less than negative ones. This loss 
is, however, quite different from the one we propose, and was not 
motivated from the point of view of quantile forecasting. On the other 
hand, Taylor and Bunn [23] and Taylor [24, 25], do start from the 
perspective of quantile forecasting in the context of exponential 
smoothing, but apply variants of quantile regression directly to the series 

.tX  None of these approaches subsumes ours as a special case. 

5. Simulations 

If quantile forecasting is desired in a given practical setting, one 
might resort to the quantile BLP values, ( )ν,ˆ hxn  defined in (3), in the 
context of the classical ARIMA model. However, this forces one to think 
about appropriate models for the data and as such is hindered by the 
“model selection” problem. The proposed QHW algorithms offer a more 
“automatic” alternative through the corresponding ( )ν,ˆ hxn  values. In 
light of the discussion in Sections 3 and 4, it therefore makes sense to 
compare the following values: 

( ) ( ).,~,ˆ νν hxhx nn ≈   (6) 

In this section, we carry out some simulation studies to assess the 
closeness of the QHW values to the quantile BLP values, suggested by (6). 
To this end, we simulate realizations from Models 1-3. For a given model, 
we repeat the following loop, m = 100 times: 

● Simulate .,,1 nXX …  (If the model is an ARIMA ( ),,, qdp  then we 
start the simulation by taking the ( )dp +  pre-sample values equal to 
zero.) 

● Simulate the next value of the series: .11 ++ = nn xX  
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● Compute the QHW 1-step prediction: ( ),,1ˆ νnx  for ,1.0,05.0=ν  
.95.0,,15.0 …  

● Fit the model to the series via maximum likelihood. Compute the 
BLP 1-step prediction: ( ),,1~ νnx  for .95.0,,15.0,1.0,05.0 …=ν  (This 
prediction uses the estimated model parameters.) 

In addition, each series is of length n = 200, with the following 
distributions for the serially independent white noise process :tZ  
Normal, symmetric Laplace ( ),1=κ  and asymmetric Laplace ( ).5.0=κ  
The location and scale parameters are chosen such that 0=tZE  and 

( ) 25Var 2 =σ=tZ  in all cases. 

A visual summary of these simulation results can be seen in Figure 2, 
which displays boxplots of the scaled quantile forecast differences (SQD) 
between QHW and BLP, as a function of the quantile ( ),ν  

( ) ( ) ( ) .
2

,1~,1ˆ
SQD

2σ

−
≡

ννν nn xx  

An appropriate specification of the scale factor appearing in the 
denominator of SQD is a difficult problem. A heuristic argument for our 
choice is as follows. Ignoring the covariance between QHW and BLP, and 
assuming the variance of QHW is approximately the same as that of the 
BLP, the expressions from Section 2 give 

[ ( ) ( )] [ ( ) ( )]1~1ˆVar,1~,1ˆVar νννν eexx nn −=−  

[ ( ) ( )]1~1ˆVar ee +≈  

[ ( )]1~Var2 e≈  

( ) ,221~2 2
0

22 σ=/σ=σ= ∗v  (7) 

since 100 =/=/ ∗vv  for all models. 

The boxplots in Figure 2, each based on 100 values, show that there is 
generally close agreement between QHW and BLP quantile forecasts. In 
fact, most SQD values lie between ,1±  with few outside .3±  There seems 
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to be changing variability across some plots, but this just alludes to the 
fact that the standard error expression derived in (7) may actually 
depend upon .ν  This is particularly evident in Model 1, where more 
variability is seen for low and high values of .ν  Given this, it may be 
more important to focus on whether there is a systematic bias in the 
QHW and BLP differences at a given quantile, as indicated by median 
SQD values away from zero. This bias is practically zero for the normal-
based plots, but is not so negligible for the Laplace-based ones (although, 
it does average out to zero across all quantiles in a given plot). The only 
bad case is Model 2-normal, which exhibits SQD values between 20±  (but 
little bias). 

 

 

 

Figure 2. Scaled differences between QHW and BLP quantile one-step 
forecasts for simulated realizations of length n = 200 from Models 1-3, 
driven by independent noise with mean zero and variance 25. The noise 
distribution is normal, Laplace, and asymmetric Laplace ( ),5.0=κ  on 
the left, middle, and right panels, respectively. 
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6. Applications 

In this section, we showcase some applications of the proposed 
QHW/QSHW algorithms. 

Figure 3 displays the famous global annual average temperature 
series from 1856 to 2005 (degrees celsius), expressed as anomalies from 
the average over the period 1961-1990. (Source: Climatic Research Unit, 
University of East Anglia.) The absence of seasonality suggests HW and 
QHW as forecasting algorithms. The points extending from 2006-2025 are 
predictions by using HW and QHW for quantiles ranging from 0.1-0.9. 
For quantiles ,5.0>ν  the difference between QHW and HW is negligible. 

 

Figure 3. Time series of global annual average temperatures from 1856-
2005 (degrees celsius), expressed as anomalies from the average over the 
period 1961-1990. Points extending from 2006-2025 are predictions by 
using HW and QHW for quantiles ranging from 0.1-0.9. 

The second time series is monthly Arctic Sea ice extent from January 
1979 to December 2005 (million square kilometers). (Source: The National 
Snow and Ice Data Center, University of Colorado. Two missing values in 
the original data were filled in by simple interpolation.) The presence of 
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seasonality suggests SHW and QSHW as forecasting algorithms with 
period 12. The data from January 1979 to December 2003 (first 300 
months) were used to predict sea ice extent for the period January 2004 
to December 2005 (next 24 months). For illustrative purposes, we show 
only the QSHW forecasts obtained using 1.0=ν  and ,9.0=ν  thus 

corresponding to a plausible envelope of lower and upper 10% prediction 
limits. Figure 4 shows the actual observed data subtracted from the 
forecasts: SHW (solid), QSHW 1.0=ν  (dash), and QSHW 9.0=ν  (dash-
dot). The reason for showing the forecasts as departures from observed 
data (forecast-observed), is that the presence of a very regular seasonal 
cycle would otherwise make it difficult to visually distinguish the lines. 

 

Figure 4. Predictions for monthly Arctic Sea ice extent (million km2). The 
observed data spans the period from January 1979 to December 2005 (324 
months). The first 300 months were used to predict sea ice extent for the 
next 24 months, via SHW (solid), QSHW with quantile 0.1 (dash), and 
QSHW with quantile 0.9 (dash-dot). The forecasts shown are departures 
from the observed data values. 
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Our last series consists of daily closing prices for the S&P 500 index 
from January 1 to October 15, 2009; a total of n = 199 observations. We 
compare one-step-ahead moving window forecasts based on two classes of 
model: Random walk, and QHW with .9.0,,2.0,1.0 …=ν  Letting tX  be 

the value of the series on day t, we used the first 10 values to predict the 
next value at t = 11. Then, the first 11 values were used to predict at                 
t =12, etc. For the random walk, the predicted price index for the current 
day was the previous day’s price. 

Table 1 contains various summary measures of forecast accuracy for 
the S&P 500 data. The underage counts the proportion observations that 
fell below their corresponding predicted values. If QHW ( )τ  is correctly 
predicting the -τ quantile, we expect underages to be approximately .τ  In 
this particular application, all underages fall in a narrow band of roughly 
0.37 to 0.47, with the closest agreement between empirical and 
theoretical occurring for QHW ( ),4.0=τ  which has an underage of 
0.3968. This does not necessarily discredit the validity of QHW, but 
merely suggests that, it may not be an appropriate model for capturing 
quantiles of the predictive distribution that deviate substantially from 
0.4. We also notice some evidence of non-monotonicity in the underages, 
for example, the underage of 0.4603 for QHW ( )8.0=τ  is actually larger 
than 0.4550, which corresponds to QHW ( ).9.0=τ  The possibility for such 
“quantile-crossings” was already noted by Koenker [15] in the context of 
quantile regression, and is usually an indication that the fitted model is 
not sufficiently rich to capture all the nuances of the data. 
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Table 1. Empirical summary measures of forecast accuracy for the daily 
closing prices of the S&P 500 data. The underage tallies the proportion of 
observations that fell below their corresponding predicted values 

Forecast Method Underage MAPE RMSPE 

Random walk 0.4497 11.75 15.60 

QHW ( )1.0=τ  0.3651 12.38 16.13 

QHW ( )2.0=τ  0.3915 12.13 15.92 

QHW ( )3.0=τ  0.3968 12.01 15.86 

QHW ( )4.0=τ  0.3968 11.99 15.85 

QHW ( )5.0=τ  0.4709 11.77 15.69 

QHW ( )6.0=τ  0.4709 11.81 15.77 

QHW ( )7.0=τ  0.4762 11.85 15.83 

QHW ( )8.0=τ  0.4603 11.87 15.87 

QHW ( )9.0=τ  0.4550 11.90 15.91 

The other summary measures reported on Table 1 are the mean 
absolute prediction error (MAPE) and root mean square prediction error 
(RMSPE). If ( )1ˆkx  denotes a generic one-step-ahead prediction based on 

observations ,,,1 kxx …  these measures are defined as 

( ) [ ( )] .1ˆ
10

1RMSPEand,1ˆ
10

1MAPE 2
1

11
1

11
−

=
−

=

−
−

=−
−
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n
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Interestingly, both measures are minimized here at 5.0=τ  among all 
the QHW forecasts. However, these values are lower still for the random 
walk predictions, suggesting that this may be a more appropriate model 
for these data. These two forecasts are illustrated in Figure 5, which 
displays departures from observed values (forecast-observed). It is clear 
that QHW ( )5.0=τ  closely tracks the random walk forecasts. Also 
discernible is a period of higher volatility in the first 75 or so forecasts. 
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Figure 5. One-step-ahead moving window predictions for the S&P 500 
index starting on the 11th trading day after January 1, 2009. The solid 
line indicates forecasts derived from a random walk model. QHW 
forecasts with quantile 0.5 are represented by a dashed line. The 
forecasts shown are departures from the observed index values. 
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